Quantifier Elimination for Linear Arithmetic
نویسنده
چکیده
This article formalizes quantifier elimination procedures for dense linear orders, linear real arithmetic and Presburger arithmetic. In each case both a DNF-based non-elementary algorithm and one or more (doubly) exponential NNF-based algorithms are formalized, including the well-known algorithms by Ferrante and Rackoff and by Cooper. The NNF-based algorithms for dense linear orders are new but based on Ferrante and Rackoff and on an algorithm by Loos and Weispfenning which simulates infinitesimals. All algorithms are directly executable. In particular, they yield reflective quantifier elimination procedures for HOL itself. The formalization makes heavy use of locales and is therefore highly modular. For an exposition of the DNF-based procedures see [5], for the NNF-based
منابع مشابه
Quantifier Elimination by Lazy Model Enumeration
We propose a quantifier elimination scheme based on nested lazy model enumeration through SMT-solving, and projections. This scheme may be applied to any logic that fulfills certain conditions; we illustrate it for linear real arithmetic. The quantifier elimination problem for linear real arithmetic is doubly exponential in the worst case, and so is our method. We have implemented it and benchm...
متن کاملA Quantifier Elimination Algorithm for Linear Real Arithmetic
We propose a new quantifier elimination algorithm for the theory of linear real arithmetic. This algorithm uses as subroutines satisfiability modulo this theory and polyhedral projection; there are good algorithms and implementations for both of these. The quantifier elimination algorithm presented in the paper is compared, on examples arising from program analysis problems and on random exampl...
متن کاملReflecting Quantifier Elimination for Linear Arithmetic
This paper formalizes and verifies quantifier elimination procedures for dense linear orders and for real and integer linear arithmetic in the theorem prover Isabelle/HOL. It is a reflective formalization because it can be applied to HOL formulae themselves. In particular we obtain verified executable decision procedures for linear arithmetic. The formalization for the various theories is modul...
متن کاملVerifying Mixed Real-Integer Quantifier Elimination
We present a formally verified quantifier elimination procedure for the first order theory over linear mixed real-integer arithmetics in higher-order logic based on a work by Weispfenning. To this end we provide two verified quantifier elimination procedures: for Presburger arithmitics and for linear real arithmetics.
متن کاملQuantifier Elimination for Linear Modular Constraints
Linear equalities, disequalities and inequalities on fixed-width bit-vectors, collectively called linear modular constraints, form an important fragment of the theory of fixed-width bit-vectors. We present an efficient and bit-precise algorithm for quantifier elimination from conjunctions of linear modular constraints. Our algorithm uses a layered approach, whereby sound but incomplete and chea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archive of Formal Proofs
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008